Skip to contents

All functions

abcd_data
Simulated data from AntiBiotics for Children with severe Diarrhea (ABCD) trial
aiptw_tes()
Function to estimate treatment effects using AIPTW for external data
apply_OTR()
Function to apply existing OTR(s) to external data
average_across_seeds()
Helper function to average results across multiple seeds
calc_aiptw()
Function to calculate AIPTW
compare.otr_results()
Compare outcomes under different treatment rules
compute_estimates()
Make treatment decisions and compute estimated outcomes/treatment effects
compute_estimates_external()
Function to compute estimates on external dataset
estimate_OTR()
Main function to calculate estimated treatment effects for treatment rule
learn_CATE()
Function to learn model for CATE using k-fold cross validation
learn_nuisance()
Estimate nuisance models (outcome, treatment, and missingness) and calculate CATE hats using k-fold cross validation
predict(<avgSuperLearner>)
Method to average predictions over multiple SuperLearners
predict_CATE_external()
Function to predict CATEs & get treatment decisions on external dataset
print(<average_results>)
Print the output of a "average_results" object.
print(<full_otr_results>)
Print the output of a "full_otr_results" object.
print(<otr_comparison>)
Print the results of otr_comparison
print(<otr_results>)
Print the output of a "full_otr_results" object.
strip_cate()
Helper function to apply strip_glm function to libraries in CATE model
strip_glm()
Helper function to remove unnecessary output from SuperLearner model to reduce output size
strip_nuisance()
Helper function to apply strip_glm function to libraries in Nuisance model