Package index
-
abcd_data - Simulated data from AntiBiotics for Children with severe Diarrhea (ABCD) trial
-
aiptw_tes() - Function to estimate treatment effects using AIPTW for external data
-
apply_OTR() - Function to apply existing OTR(s) to external data
-
average_across_seeds() - Helper function to average results across multiple seeds
-
calc_aiptw() - Function to calculate AIPTW
-
compare.otr_results() - Compare outcomes under different treatment rules
-
compute_estimates() - Make treatment decisions and compute estimated outcomes/treatment effects
-
compute_estimates_external() - Function to compute estimates on external dataset
-
estimate_OTR() - Main function to calculate estimated treatment effects for treatment rule
-
learn_CATE() - Function to learn model for CATE using k-fold cross validation
-
learn_nuisance() - Estimate nuisance models (outcome, treatment, and missingness) and calculate CATE hats using k-fold cross validation
-
predict(<avgSuperLearner>) - Method to average predictions over multiple SuperLearners
-
predict_CATE_external() - Function to predict CATEs & get treatment decisions on external dataset
-
print(<average_results>) - Print the output of a
"average_results"object.
-
print(<full_otr_results>) - Print the output of a
"full_otr_results"object.
-
print(<otr_comparison>) - Print the results of otr_comparison
-
print(<otr_results>) - Print the output of a
"full_otr_results"object.
-
strip_cate() - Helper function to apply strip_glm function to libraries in CATE model
-
strip_glm() - Helper function to remove unnecessary output from SuperLearner model to reduce output size
-
strip_nuisance() - Helper function to apply strip_glm function to libraries in Nuisance model